Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 529(11): 2995-3012, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33754334

RESUMEN

Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.


Asunto(s)
Vías Auditivas/fisiología , Cóclea/fisiología , Neuronas Eferentes/fisiología , Cuerpo Trapezoide/fisiología , Animales , Vías Auditivas/ultraestructura , Cóclea/ultraestructura , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Neuronas Eferentes/ultraestructura , Órgano Espiral/fisiología , Órgano Espiral/ultraestructura , Cuerpo Trapezoide/ultraestructura
2.
Mol Brain ; 13(1): 6, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941524

RESUMEN

Developing central synapses exhibit robust plasticity and undergo experience-dependent remodeling. Evidently, synapses in sensory systems such as auditory brainstem circuits mature rapidly to achieve high-fidelity neurotransmission for sound localization. This depends on a developmental switch in AMPAR composition from slow-gating GluA1-dominant to fast-gating GluA4-dominant, but the mechanisms underlying this switch remain unknown. We hypothesize that patterned stimuli mimicking spontaneous/sound evoked activity in the early postnatal stage drives this gating switch. We examined activity-dependent changes in evoked and miniature excitatory postsynaptic currents (eEPSCs and mEPSCs) at the calyx of Held synapse by breaking through the postsynaptic membrane at different time points following 2 min of theta burst stimulation (TBS) to afferents in mouse brainstem slices. We found the decay time course of eEPSCs accelerated, but this change was not apparent until > 30 min after TBS. Histogram analyses of the decay time constants of mEPSCs for naive and tetanized synapses revealed two populations centered around τfast ≈ 0.4 and 0.8 ms, but the relative weight of the τ0.4 population over the τ0.8 population increased significantly only in tetanized synapses. Such changes are blocked by NMDAR or mGluR1/5 antagonists or inhibitors of CaMKII, PKC and protein synthesis, and more importantly precluded in GluA4-/- synapses, suggesting GluA4 is the substrate underlying the acceleration. Our results demonstrate a novel form of plasticity working through NMDAR and mGluR activation to trigger a gating switch of AMPARs with a temporally delayed onset of expression, ultimately enhancing the development of high-fidelity synaptic transmission.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Miniatura/fisiología , Plasticidad Neuronal/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/metabolismo , Cuerpo Trapezoide/fisiología , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteína Quinasa C/metabolismo , Receptores AMPA/biosíntesis , Receptores AMPA/deficiencia , Receptores AMPA/genética , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Transmisión Sináptica/fisiología , Tetania/fisiopatología , Ritmo Teta , Factores de Tiempo , Cuerpo Trapezoide/ultraestructura
3.
Neuron ; 100(3): 534-549, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408442

RESUMEN

The calyx of Held is the preeminent model for the study of synaptic function in the mammalian CNS. Despite much work on the synapse and associated circuit, its role in hearing remains enigmatic. We propose that the calyx is one of the key adaptations that enables an animal to lateralize transient sounds. The calyx is part of a binaural circuit that is biased toward high sound frequencies and is sensitive to intensity differences between the ears. This circuit also shows marked sensitivity to interaural time differences, but only for brief sound transients ("clicks"). In a natural environment, such transients are rare except as adventitious sounds generated by other animals moving at close range. We argue that the calyx, and associated temporal specializations, evolved to enable spatial localization of sound transients, through a neural code congruent with the circuit's sensitivity to interaural intensity differences, thereby conferring a key benefit to survival.


Asunto(s)
Vías Auditivas/fisiología , Red Nerviosa/fisiología , Localización de Sonidos/fisiología , Cuerpo Trapezoide/fisiología , Estimulación Acústica/métodos , Animales , Vías Auditivas/ultraestructura , Humanos , Red Nerviosa/ultraestructura , Factores de Tiempo , Cuerpo Trapezoide/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA